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LETTER TO THE EDITOR
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PO Box 39953, Ramat-Aviv 61398, Tel-Aviv, Israel

Received 29 March 1996, in final form 6 June 1996

Abstract. Stochastic systems with a stretched exponential form of probability density function
(turbulence etc) are studied. A dimensionless moments is defined asFnp(r) = fp/f

p/n
n , where

fp(r) is the standard moment of orderp (p > n). Pseudo-scaling (PS) is defined as the
existence of power relationshipsFnp ∼ F

ρ
nq , where exponentρnpq depends onp, q and n.

The scaling is purely due to the way the given quantities are constructed and to the existence
of the stretched exponential decay of the probability density functions. It is shown that for
large enoughn, p, q the pseudo-scaling takes place even if the ordinary scaling is broken. It
is shown that there are two kinds of asymptotic pseudo-scaling: withρnpq = (p − n)/(q − n)

and with ρnpq = (p ln(p/n))/(q ln(q/n)). If ordinary scaling also takes place in the system,
then these two kinds of pseudo-scaling lead to two kinds of corresponding ordinary scaling
laws. Agreement between the theoretical approach and experimental results of different authors
is established for turbulent systems (laboratory and numerical simulations), both for situations
where ordinary scaling takes place and for situations where ordinary scaling does not take place.

Scaling and corresponding power laws are widely used in the theory of stochastic systems.
In the theory of turbulence, for instance, the scaling hypothesis is usually formulated in the
terms of the moments of the space velocity differences

〈1up
r 〉 = 〈[u(x + r) − u(x)]p〉 ∼ rζp (1)

where p is the order of the moment andζp is the ordinary scaling exponent. In a
neighbourhood of the ends of the scaling interval, the scaling law (1) should be broken. An
analogous situation takes place in the cases when the scaling interval is not long enough.
However,dimensionlessmoments (introduced for the first time in [1])

Fnp = 〈1u
p
r 〉

〈1un
r 〉p/n

(2)

can fulfil the pseudo-scaling (PS) condition, which appears because of the existence of the
power relationship

Fnp ∼ Fρ
nq (3)

even for situations when the ordinary scaling, (1), is broken (the idea of generalized self-
similarity appeared for the first time in [2] where experimental evidence of this phenomenon
are also given, see below).

It is known that probability density functions (PDFs) oflarge velocity differences in the
turbulence have stretched exponential form

P(|1ur |) ∼ exp(−λr |1ur |mr ) (4)
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Figure 1. Moments (structure functions) of jet turbulence at space scaler corresponding to a
neighbourhood of the molecular viscosity end of the scaling range:|〈1u

p
r 〉|1/p , as a function of

the (p!)1/p (adapted from [5]).

whereλr is some function onr (see, for instance, [3, 4]). In this section we will consider
the simplest case withmr = 1 (the general case will be considered later). Then one can
estimate thehigh-ordermoments as

〈|1ur |p〉 ∼
∫ ∞

0
|1u|p exp(−λr |1u|) d |1u|. (5)

One cannot normalize the PDF due to the unknown form of the PDF for small values of
|1u| which is significant forsmall-order moments. For largep, however, one can estimate

〈|1ur |p〉 ' crp!λ−(p+1)
r (6)

wherecr is an unknown function ofr (related to the normalization of the PDF). First of
all, one can verify experimentally the dependence of the moments onp given by (6). Let
us rewrite (6) in the form

〈|1ur |p〉1/p ' (χr)
−1/pλ−1

r (p!)1/p (7)

where

χr = λr/cr . (8)

Figure 1 shows recent experimental data obtained in a laboratory turbulent flow [5]. These
data correspond to a neighbourhood of the short-wave end of the scaling range. Scales on
axes in figure 1 are chosen so that a dependence like that of equation (7) corresponds (for
large p) to a straight line intersecting the origin of the axes. One can see that there is
agreement between representation (7) and the experimental data (dots in figure 1) beginning
from p = 4. It should also be noted that ifχr is very different from 1, then in figure 1
there should be ap-dependent deviation from the straight line behaviour.
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Figure 2. Log–log plot ofF36 againstF35 for different laboratory experiments and numerical
simulations (adapted from [2]). The experimental data can be well fitted by relation (3) with
ρ365 ' 1.63 given by (22) (whereas the continuous straight line corresponds toρ365 = 1.5 given
by (11)).

Using representation (6) (and (8)) one obtains

Fnp ∼ (χr)
αnp (9)

where

αnp = p

n
− 1. (10)

Sinceχr is a function ofr one can use the parameterχr as a varied one that leads
immediately to the pseudo-scaling law (3) even if the dependence ofχr on r has no power
form (i.e. with an absence of the ordinary self-similarity on the space scaler). Indeed,
substituting (9) and (10) into (3) one obtains

ρnpq = p − n

q − n
. (11)

This representation ofρnpq is an asymptotic one (for large values ofn, p, q). However, even
for n = 3, equation (11) gives plausible values of exponentρnpq . Indeed, figure 2 (adapted
from [2]) shows recent experimental data obtained in different laboratory turbulent flows
(and for direct numerical simulations) in a space-scale range where molecular viscous effects
are present and ordinary self-similarity is not observed. For these data,n = 3, p = 6, q = 5.
The continuous straight line in figure 2 corresponds toρ365 = 3

2 obtained from (11) (see
also the following where a better agreement with the experimental data will be obtained
taking into account deviations ofmr from a constant value).

Let us consider the general case withmr depending onr (cf earlier and [3, 4]). Then for
largep

〈|1ur |p〉 ∼ c∗
r λ

−(p+1)/mr

∫ ∞

0
xp/mr e−x dx. (12)
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Since for largep∫ ∞

0
xp/mr e−x dx ∼

(
p

mre

)p/mr

(13)

one can estimate

〈|1ur |p〉 ∼ c∗
r λ

−(p+1)/mr

(
p

mre

)p/mr

. (14)

Then

Fnp = 〈1u
p
r 〉

〈1un
r 〉p/n

∼ (χ∗
r )((p/n)−1)

(p

n

)p/mr

(15)

where

χ∗
r = λ

1/mr
r

c∗
r

. (16)

One can rewrite (15) in a form similar to (9),

Fnp ∼ (χ∗
r )α

∗
np(r)

where

α∗
np(r) =

(p

n
− 1

)
+ p

mr

logχ∗
r

(p

n

)
. (17)

Then

ρ∗
npq(r) = ((p/n) − 1) + (p/mr) logχ∗

r
(p/n)

((q/n) − 1) + (q/mr) logχ∗
r
(q/n)

. (18)

The exponentρ∗
npq is independent ofr (i.e. the pseudo-scaling exists) in two asymptotic

cases: first ∣∣∣(p

n
− 1

)∣∣∣ � p

mr

∣∣∣logχ∗
r

(p

n

)∣∣∣ ∣∣∣(q

n
− 1

)∣∣∣ � q

mr

∣∣∣logχ∗
r

(q

n

)∣∣∣ (19)

and second
p

mr

∣∣∣logχ∗
r

(p

n

)∣∣∣ �
∣∣∣(p

n
− 1

)∣∣∣ q

mr

∣∣∣logχ∗
r

(q

n

)∣∣∣ �
∣∣∣(q

n
− 1

)∣∣∣ . (20)

In the first case

ρ∗
npq ' p − n

q − n
(21)

i.e. in this caseρ∗
npq ' ρnpq (cf equation (11)). In the second case

ρ∗
npq ' p

q

ln(p/n)

ln(q/n)
. (22)

It is interesting to note that for the experimental situations represented in figure 2 the
experimental value ofρ365 ' 1.65 whereas estimation (22) givesρ∗

365 ' 1.63. This
coincidence could be an indication that the asymptotical estimations of the PS-exponent
are also applicable for moderate values ofn, p, q.
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Figure 3. The scaling exponent,µq , of the turbulent energy dissipation field moments obtained
in a recent turbulent experiment [8], againstq ln(q/q0).

In the cases where ordinary self-similarity takes place, the ordinary scaling asymptotics
should be determined by the pseudo-scaling laws (if the PDFs of these systems have
stretched exponential form). For the first type of pseudo-scaling this asymptotic can be
found from the functional equation

ζp − (p/n)ζn

ζq − (q/n)ζn

= p − n

q − n
(23)

which follows immediately from (1) and (11). It is easy to show that the general solution
of (23) is a linear one,

ζn = An + C (24)

whereA andC are some constants. This kind of linear scaling asymptotic is well known
for turbulence (see, for example, [6, 7] and references therein).

The ordinary scaling asymptotic corresponding to the second kind of pseudo-scaling
law can be found from the functional equation

ζp − (p/n)ζn

ζq − (q/n)ζn

= p

q

ln(p/n)

ln(q/n)
(25)

which follows immediately from (1) and (22). To obtain the general solution of this
functional equation let us seekζn in the following form,

ζn = nσ(n) (26)

whereσ(n) is an unknown function of the variablen. Then from (25) we obtain

σp − σn

σq − σn

= ln(p/n)

ln(q/n)
. (27)

If we take derivatives of both parts of equation (27) with respect to the variablen we obtain

dσ(n)

dn
= A

n
(28)
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whereA = [σq − σp]/[ln q − ln p]. Since the general solution of (28) is

σ(n) = A ln(n/n0) (29)

(wheren0 is some constant) the corresponding general solution of (25) is

ζn = An ln(n/n0). (30)

To compare this result with a recent laboratory experiment [8], let us recall a relation
between the scaling law of the velocity differences field (1) and the scaling law of the
corresponding energy dissipation fieldεr [6, 8],

〈εq
r 〉 ∼ r−µq . (31)

The scaling exponents from (1) and (31) are related by the following relationship [6, 8]

ζp = 1
3p − µp/3. (32)

Thus asymptotic (30) gives forµq an analogous representation

µq = A∗q ln(q/q0) (33)

whereA∗ = −3A andq0 is some constant.
Experimental evidence for the linear asymptotic ofµq corresponding to (24) can

be found in [9], whereas figure 3 shows recent experimental data (dots) obtained in a
laboratory turbulent flow [8] and corresponding to (33). We choose the axes in figure 3
so that relation (33) is represented by a straight line intersecting the origin of the axes (it
should also be noted that in the experiment [8] the ordinary scaling hypothesis only holds
approximately). Thus, both pseudo-scaling laws (21) and (22) have corresponding ordinary
scaling analogies (in the cases when the ordinary scaling takes place).

The author is grateful to the referee for constructive comments.
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